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2 For symmetric stable sequences,notions of innovation and Wold decomposi-
tion (WD) are introduced, characterized, and their ramifications in prediction
theory are discussed. As the usual covariance orthogonality is inapplicable,

the non-symmetric James orthogonality is used, thus leading to right

and left innovations aid Wold decompositions, which are related to regression
R h .. . .
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0. 1Introduction

The Wold (or orthogonal) decomposition of Gaussian and other second-order
stochastic processes is a (fundamental) tool in their study, and in particular
in their predictions. For stable and other pth—order processes (with p <2)
the lack of second moments renders the usual L2 notion of orthogonality inap-
plicable, and thus orthogonal decomposition of these processes does not even
make sense a priori. There are, however, notions of orthogonality in Banach
spaces; and one of these, due to G. Birkhoff and popularized by R.C. James
{ 5], seems appropriate in this context. Still, the situation is much more
complex than in the second-order case, as we shall see shortly.

The purpose of this paper is to examine James' orthogonality in the con-
text of symmetric a-stable (SaS) random variables and procesées; and to de-
fine appropriate notions of Wold decomposition for S¢S sequences and charac-
terize those sequences which can be so decomposed. The role of independence
is also examined. (Orthogonality implies independence in Gaussian systems,
but not in stable systems!)

The organization of the paper is as follows. Section 1 includes some

v e

preliminary facts, which clarify the role of orthogonality in stable systems.

T
2 s

We give some characterizations of orthogonality (Corollary 1.3); for example,

)

e rrr e
Yy e

we find that for jointly SaS r.v.'s X and Y, X is orthogonal to Y if and only
if E(Y|{X) =0. We also characterize the linearity of a conditional expectation
in a stable system in terms of an appropriate orthogonality.

In Section 2 we define two kinds of innovations, right orthogonal and
left orthogonal, and Wold decompositions for SOS sequences, and give neces-

sary and sufficient conditions for their existence. It turns out that a

right Wold decomposition exists, if and only if right innovations exist, if
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and only if the regressions on the past are linear (Theorem 2.3). Left in-

novations always exist (Proposition 2.8), while a left Wold decomposition
exists if and only if the metric projections on the past are linear (Theorem
2.10). We also define '"non-linear' innovations and Wold decompositions.
Right nonlinear innovations and Wold decompositions always exist (Theorem
2.2). Left nonlinear innovations always exist (Proposition 2.8) and we note
that a left nonlinear Wold decomposition exists whenever a left Wold decompo-
sition exists. The right and left innovations and Wold decompositions have
precisely the properties required to solve the problem of predicting m-steps
ahead based on past observations, and they correspond to regression prediction
and best prediction in the usual pth order moment sense (1 <p<a) respectively.
Thus when a right or left Wold decomposition exists, the m-step linear regres-
sion prediction or best linear prediction has a fairly simple solution. How-
ever, when a Wold decomposition does not exist, then the prediction problem
becomes difficult indeed as is illustrated by the case of harmonizable stable
sequences (cf. [11]).

In Section 3, an independent decomposition is introduced and spectral
necessary and sufficient conditions are given for its existence. Section 4
consists entirely of examples, intended to illustrate the various decomposi-

tions and some of the complexities involved.

oAV itanrtlity Cedes
LA 1 aad/or

i , ‘
Dent 1 Tarctal /!

! I | :
: AT




r_.'_.' I T T T N o T T B T T B T W W N Wy W A Y e VNS L v s v v

1. Orthogonality and Stable Systems

Sy

.« .
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A collection of random variables {Xt: t € Tt defined on (,Z,P) will be called

Jointly symmetric a-stable or a symmetric a-stable process if each finite real-

e 4 <
)

linear combination XA,Xt. has a symmetric stable distribution of index a. We ab-
breviate "symmetric u—st;ble" by SaS. If X is SaS, then for 0<p<a, we have
ElX]p<iw, so that a SaS process {Xt} is a pth order process, i.e. {Xt} c LP(Q,Z,P).
A useful tool in the analysis of SuS processes is the so-called spectral represent-
ation theorem. The version we will need here says that if {Xn: n ¢ A} (where A is

finite or denumerably infinite) is a SaS process, then there exist functions

{fn: neAl ¢ La[O,l] such that '

n n
-log E exp(i z AX ) = Ilz ALf
=13 % =y

I
o
Further, if {Z(s): s |0,1]} is " a-stable motion," i.e., an independent incre-

ments SaS process with -log E exp itZ(s) = slt|a, then the process {Yn} defined by .

1
Y= [of (s)dzZ(s)

is stochastically equivalent to {Xn}, and we say that {Xn} is represented b
{fn}. The spectral representation was first expressed in this form by Kuelbs

[ 7]; for more information consult [4 ].

Now let L be a normed linear space, with norm For x,y ¢ L, we say

LR I I
LT e

that x 7s (James) orthogonal to y, writtem x L1y, if

-,

llx+ 2yl 2 lix]l

for all scalars A. For subspaces M and N of L, we say MLN if min for all meM -
and ne N, If L is in fact a Hilbert space, this defines the usual "inner product" .

orthogonality. For general Banach spaces, however, this is a non-symmetric

LSOOI ~“..'.-"-ﬂ.;\‘."""..'. " e T "
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notion, i.e. x may be orthogonal to y, but not vice versa.

. . th .
This definition makes sense for random variables with p moments in that we

may take (L,]|*|]) to be LP(Q) with the usual norm. For X and Y in Lp(Q), if X
is orthogonal to Y, we will write X LPY. The relation lp is well-defined for
jointly SaS random variables as long as 1 <p<a

The following known characterization of orthogonality will be useful for us.
For a proof, consult [ 13; Thm. 1.11, p. 56 and Lemma 1.14, p. 92]

Lemma 1.1. Let X and Y be random variables with pth moments, p>1. Then X LPY

<p..1 >Y

1f and only if EX = 0.

Here, we use the convention that for complex z and real q, z<q> denotes
\z]q_lz. (We take O<q> = 0.)

A point evident from this lemma and crucial for us is that the orthogonality
relation is "linear" in the second argument, but not in the first, i.e. X LPY

and X lpZ implies X lp(aY-FbZ) for all a,b -- but we may have X lpZ and Y LpZ

without X +Y lp Z.

The next lemma is somewhat curiovs.

Lemma 1.2. Let a>1 and {X,Y} be jointly SaS represented bu {f,g}. Then for

aill pe (1,0),
na1s <mg-1>
L AT
E|x|P [1£]% dm
(m s Lebesgue measure on [0,1] ),

Remark. Note that the right-hand side does not depend on p. It follows from this
and Lemma 1.1 that for such X and Y, X LpY for some p ¢ (1,n) if and only if X .
P

for /1l such p, if and only if f 1,8 We shall henceforth say in this case simply

that X is orthogonal to Y, omitting mention of p, and write X 1Y.




reeo

1.3

itX
Proof of Lemma 1.2. Let X by SaS with Ee

o -lel®
0 = e .

Now,

E explit(X+2AY)]} = exp[-”f-*lg”g’tla], which shows that X+ AY is distributed as

!lf+—lgHuX0. Therefore,

lx + AvIPo= e+ agllPElx 1P

Differentiating this expression with respect to A and putting A = 0, we obtain

when 1 <p <o that
Ex Py o Elx IPHER e g an = el [PflEll e an

proving the lemma. t

Tt follows from Lemma 1.2 that

<y=1> op-1>,
Eylxy - If sdm o EX TV

el dm Elx|P

where the first equality is established by Kanter [ 6 ]. This combined with

lLemma 1.1 show~

Corollary 1.3. For s1S {X,Y} reprcsented by {f,g} and 1 <p <a we have

<p—l>
,\'J.Y—EX—Y

E|x|P

X

Y - E(Y]X);

anel the e licwing: are equivalent:
T)oX LY,

(250 E(Y[X) = 0,

(zii) Py =0,

. <D=
(iv) [f ? 1>g dm = 0.

We note that if X and Y are independent SuS variables, then necessarily

X1Y and Y1X. The converse is not true, however, since Schilder [12] has SQ
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shown that X and Y are independent if and only if their representatives f and g
have a.e. disjoint support (i.e. f°g=0 a.e.). Clearly there exist f and g with

T=1> . . .
ffKl 1 g dm=0 yet f*g # 0 a.e. 1In fact, orthogonality implies independence

on/y in Gaussian systems, in the following sense.

Proposition 1.4. Let 1 <a<2, and let L be a closed linear space of SaS random

Juriables with dim(L) >1. Suppose that whenever X,Y e L and X LY, then X is in-
leyendent of Y. Then a=2, 1.e. L consists of mean-zerco Gaussian random varia-

bice,

Proof. Choose an arbitrary non-zero Xe¢L and let 1 <p <a. By the hypothesis
. . <p-1> : \p
dim(L) >1 we may find Z ¢ L such that Z# XX for any A ¢ R. Let B=EX Z/E[X|¥.
<p-1>
This gives that EX p-1 (Zz-BX)=0. Since Z-PX#0, we may find a constant b so
L . . . . <p-1>
that Y =b(Z - BX) is distributed as X. Since EX Y =0, Corollary 1.3 shows
X 1Y, and so X and Y are independent by hypothesis. This implies that (X,Y) is

distributed as (Y,X), and hence that

<p-=-1>
P~y

<p-1> <p=1>
EX+ D P -1 = Ex+ PP - x4+ v) = 0.

Hence X+Y L X ~Y, and again this means that X+Y is independent of X-Y.
A o
Now let ¢ be such that &(t) = E exp(itX) = exp(-c|t]”) = E exp(itY). Then

by independence we have that for all t,

E explit(Xx+Y) + t(X-Y)]}

E exp{it(X+Y)} * E expl{it(X-Y)}

= ot = expl-belt|®
and

Foexplift(X+Y) + t(x-")]}

E exp{i2tX}

= 920) = exp(-2%c|t]™ .

Therefore 2a=4 and ¥ = 2, i

The equivalences of Corollary 1.3 can be seen in a broader context. Let
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1<p<a, and let {Xt: t < T} be any SuS process represented by {ft: tcT})

(T here is arbitrary). Fix an arbitrary subset S of T, let t ¢ T\S, and define

1.(s) = sp{X : s.S} and  L'(S) = spif : s« St . The following result
s L) S L'

gives necessarv and sufficient conditions for the conditional expectation to be

linear, i.e. to helong to L(S).

Proposition 1.5. The jollowing are eguivalent:

() E(XtIXS: se€S) ¢ L(S).
(ii) There cxists X e L(S) surh that L(S) 1 Xt - X (in which case
E(X_|X : seS) = i).
t'"s

(i17) There crists §<:L'(3) such that L'(S) L, ft - g {in which ccse

E(thXS: s« S) ¢ represented by g).

Proof. Let JO be the spectral representatior may for {X[}, i.e. JO(Xt) = ft

lise the same argument as in the proof of Lemma 1.2 tc see that for any tj ¢T

and scalars A,
J

~13

L% N g = WDEC T g

r

, this shows ¢J, extends by

where X, is as in Lemma 1.2, Putting ¢ = ‘lXOII 0

0

P
L)
linearity and continuity to an isometry cJ of L(S) onto L'(S). Hence (ii) and

(iii) are equivalent.

We show (i) and (iii) are equivalent. Let Y by any arbitrary element of
L(S), and define h = J(Y). (Or equivalently, let h be arbitrary in L'(S) and
define J = \fl(hl) For ¢(u) g expli(uXt-+Y)], we have

v (u) = exp[—'luft + hlﬁi], and thus, putting X = E(Xt‘Xs: s+ S), that
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(o n , ) , <a-1>
E el’X = EXtelY = -i¢'(0) = 1«axp[—|lhllf‘x]fhu £, dm.

Now for arbitrary il{L(S), let g = J(g). (Again, we may let gc_L'(S) and define
X = J_l(g).) Define Y(u) = E exp[i(u§-+Y)l, and note that

vty = expl-llug+ wil“] , and

PR <p=12~
EelTX = —ip'(0) = iuexp[-HhHg] m“* 175 an.
This gives
2R A ~ =1 > ~
Eel (X - X) = iCtexp[—HhHZ]J'h(d 1 (f, - g) dm.

Since both X and X are measurable with respect to 0{X(s): s~ S}, we have that
v = X if and only if EelY(X - X) =0 for all Y ¢ L(S) (see, e.g. [8] or [10]).
This fact and Lemma 1.1 applied to the last equation give us the equivalence of

(i) and (iii), proving the proposition. 0

In particular, this shows how the linearity of regression is related to

orthogonality.

Corollary 1.6. ‘ne fullowing are couivilont,

(7} E(X_|X : seS) = 0,
t' s

(i) EE{XS: scS} L X

LP(2) e’

EFEE] - .
(i) Sp{fs. SQS}LCXL £

o t’
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2. Orthogonal Decomposition of Stable Sequences

Throughout this section we assume 1 <0 <2 and take p such that 1 <p-= Also

we let {X ¢ =@ <n<»} be a SaS sequence on (§,Z,P). We definc the linear spaces
n

of the sequence:

L = sp{X,: ksn} .
n k LP(Q)

and the corresponding nonlinear spaces:

L = Lp(Q,Zn,P) ,

wher ¢ 'n = W{Xk, k=n!. Note that L consists of S0S random variables, while Ln

contains much more. Note also that since for every X eEE{Xn: —©<qn <™} with

representative f <L we have, as in the proof of Lemma 1.2, IIXH =C l{f“
P P “
L7 () L
for some constant Cp = IIXOH p depending only on p and not on X, the choice of
LY (2

)

p in (1,2) throughout the following is immaterial.
We will be concerned with the orthogonal decomposition of these spaces. Our
notation, which is somewhat non-standard, is as follows. For a Banach space M

., the symbol M +...+ M_ (or »" M,) denotes the sub-

d N . ~r\, I
and closed spaces M 1 h 5=1";

Mo,
1’ 2!

b} ~\m
space {xl+...+ Xt % eMj, 15j<n}. Also, M +M,+... (or Xj=1Mj) is defined

. the s iting M = M M= g ¥
to be the subspace u j=11j' Writing l_g...Q Mn (or Zj=1 @ Aj) means

that M = Ml +.. .+ Mn and also that

N < <
(M1 +...+ Mk) L (Mk+1 +...+ Jn) for all 1 <k<n . (2.1)
Writing A =M, ..M (or M= Z;=1 @ M) means that M = M, +...+ N and that
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2.2

5 (M 4ok M) L M b M) for all 1 <k<n, (2.2)

i.e., that M = Mn 9...9 Ml. Thus the statements M = M1 3 M, and M = Ml ® M2

@ M.)

are, in general, distinct. Writing M = 5 M, (respectively, M = YJ -1 ¢

j=1

will denote that M = Z?=1Mj and further that (2.1) (respectively (2.2)) holds

for all n.

& If M= Z§;l @ Mj and we pick 0 # X eMj, it follows that {xj} forms a basis

for its closed linear span, i.e. each x GES{xj: j=1,2,...} has a unique norm-

(oo}

convergent expansion x = Zj-lijj for some scalars Aj. This is so because a

necessary and sufficient condition for {xj} to be a basis for its closed linear

(R Jn En amn

span is the existence of K<« such that for all n, m<n, and scalars Bj’

12 i 15 x| < Klllg=18jlel (see, e.g. [14]); and, because of orthogonality,
n m m
AR lljzlajxj+32+16j Y el
The same argument cannot be made in the case M = Z?=l ® Mj.

Right Innovations and Wold Decomposition

We will say that {Xn} has rignt imnovations if for each n there is a sub-

space N so that L =L @ N . N is necessarily of dimension one or zero
n n n-1 -+ "'n n

(by an elementary argument). Similarly, we say that {Xn} has right non-lincar !

innovations if for each n there is a subspace N so that L = [ & N .
n n n-1l > n

We say that {Xn} has a ritght Wold decomposition if there are subspaces N

n’

(e8]
-2 <n<*, so that for each n, Ln = (Zk=0 ® Nn—k) ®L ., Ln 1 Nm for all m >n,

t T @ h P i =5
and further each Z ¢ k=0 2 Nn—k as an L"-convergent expansion Z k=0wn—k’
WjA'Nj, which is then necessarily unique. 1In this case it is easy to sce that

we can write X =Y + Z , where
n n n

......
-------

ST N ".‘.' "'-_'-,, LS - .- RIS ..
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(1) {Yn} and {Zn} are jointly SaS processes,

(i) {y } cL__ (the "remote past") and {v } 1 {z },

(iii) there exist gj € Nj and a € R so that Zn =

(ww r .
k,n Lk=Oak,n'n—k

In the case that Xn is stationary and not completely deterministic (i.e.,

L # L)), we may choose |'E.” = 1 and claim that a is independent of
- 0 LP () k,n

n, i.e. Zn is a moving average of an "orthonormal sequence’.

’

Similarly, we can define right non-linear Wold decomposition by requiring

the existence of N so that L = (I N Yol L 1 N for m>n, and
n n =0 < n < n m

-—c0?

@ Nn has a norm convergent expansion

k=0

= N . . . .
Z Zk=0wn—k’ wj <Ny, which is then unique

The first result, Proposition 2.1, is the key ingredient to the proof that

with the property that each Z ¢ L X

right innovations, linear or non-linear, imply the corresponding Wold decompo-
sition (see Theorems 2.2 and 2.3). This proposition is implicit in [ 2] and

| 3]; we include a proof here for completeness.

Proposition 2.1. Suppose that M is a closed subspace of some P space, p>1,

arc that there exist closed subspaces Mn and On of M with

v=M @0
>

a0 @...9 01 for each n21, Then M = (Z:=1 @ Od)g (Q Mn) and each

n

vm k3 » » o
k - = ® 0 has a unique norm converyent expansion k = L___o , o e 0 .
n=1l <« 'n : n=1l"n’ n n

Proof. Define M =M , K =0 ®,.. 0., and K = uK ., We first show that
—_— o nn n n > > 1 R non

M=M @K . Clearly, M_1 Kn for each n, and by continuity, M_ 1 K . Now

for x - M, write x = m_+ k_ withm ¢M , k ¢K . Sincem tk we have that
n n n n’ n n n  n

.

o = dim ok =l ana Il s flx-m l < 2l

The sequences m and kn , being norm bounded in a reflexive Banach space,

have simultaneously weakly convergent subsequences, say {mn } and {kn } with
i i

.

3
2SR
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weak limits m  and k_, respectively. It is clear that x = m_ + k_, and that

k¢ K_, proving M = M_ & K_

[o0]

It remains to show that each element k «+ K  has a unique norm convergent

expansion k = £ o , o € U . For each n we can write k = m_ + k_uniquely
n=l n’ 'n n n n

wherem = M and k.« K. Tn turn we may write k= o, +...+ o uniquely
n n n n n 1 n

with o, ¢ 0,. Define the operator Q : K - K by Q k=k . It is easy to
j j n° n n n

see that QnQK QnAK' Also by orthogonality we have that

1A

lokll = fik = okl + [kl = lin Il + Il < fin_+ e L+ fixll = 2/l

so that {Qn} is a bounded sequence. Clearly, s-lim Q k = k for any k ¢ HKm.

n-rw
Hence, by continuity, we have for any k ¢ Koo that
n (¢ 9]
k = s-lim an = g-lim E o, = Z o - i
n—re n->w i: 1 n= 1

Theorem 2.2, {Xn} has right non-1lincar innovations and a ri;ht non-linear

Wold cdecomposition.

Proof. Note that for each n, L = {E(x|z : X e L }. Define
—_— n-1 n- n

l).
Nn = {x - E(X]En_l): X sLn}. Clearly, each element of Ln is the sum of an

-1
Y - N , and note that E(Y\Z
n n-

element of L
n 1

and an element of Nn' To see Ln— L Nn’ let XL and

n-1

1) = 0. Hence,

<p-]

>
Y = EE(X

EX P=1>¢1

- <p—1>
o) = EX E(Y[Z _

) =0,

and thus {Xn} has right non-linear innovations.

To see that {Xn} has a right non-linear Wold decomposition, fix k and note

that by the argument above
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Now identify Lk—n with Mn and Nk—n+l with (n of Proposition 2.1

The next result is somewhat more interesting.
Theorem 2.3. The following are equivalent.
(i) {Xn} has a right Wold aecomposition.
(i) {Xn} has right innovations.

(111) E(X_.. |X_,
n

ol ) € Ln for each n, i.e. regressions on the

Xn—l’

past are Linear.

Proof. The "linear version'" of the proof of the second statement of Theorem
2.2 shows that if {Xn} has right innovations it has a right Wold decomposition.
The converse follows by definition, so (i) and (ii) are equivalent.

We show the equivalence of (ii) and (iii). Take, in the notation of Pro- »-
position 1.5, Xt = Xn+1 and S = {n, n-1,...}. Then L(S) Ln’ and by that .

Proposition we have that (iii) is equivalent to the existence of X an such

that Ln L Xn+1 - i. The latter, clearly, is in turn equivalent to the

2 ,-.: Bl

existence of the required innovation space Nn+1' N o
Remark. By Theorem 2.2, we may write X = Vn + Zn where Vn + L and N
5 -
-7 @ N . 1f {X_} has a right Wold decomposition, we have X =Y + Z -
n k=0 « n-k n n n n .
as in the comment following the definition. In this case, we must have Vn = Yn %
Z = i = - M I ::
and 7 =2, since L_, < L_, and N {x E(xlzk_l) X eLk} I -
X - E(Xle_l): X eLk} = Nk’ and the decomposition is unique. ?
=
Left innovations and Wold decomposition ;
‘-

We now examine /‘eft innovations and Wold decompositions. Their definitions

are obtained by reversing the arrows in the definitions of their right counter-
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parts, and ignoring the requirement Ln L Nm (or Ln L Nm) for the Wold decompo-

on

sition (as N L L follows fromL = (i _®N _) &L ). Also, the "basis
m n n k=0 »"'n~k” » -

© -
property' of Ek—O ® Nn Kk is automatically satisfied, as can be seen from the L
argument following the definitions of @ and &.

As conditional expectation is an appropriate notion for the study of right i!

orthogonality, the metric projection in L? is an appropriate notion for the

study of left orthogonality. For completeness we include the needed definitions

and preliminary results here in a compact, self-contained way (see [ 5,9, 13]).

Let (L,I ) be a Banach space, and M a closed subspace of L. For x ¢ [,
an element m_ € M is called a best approximation to x in M if ||x - mxH < “x - ml

X
for all x ¢ M, 1If L is reflexive and strictly convex (as we henceforth assume

throughout) m exists and is unique (see [13]). 1In this case we define Py = m
X
and call PM the metric projection onto M. PM is continuous, bounded, and idem-

potent, but not in general linear. In fact, if P, is a linear operator for all

M
closed subspaces M of L, L must be isometrically isomorphic to a Hilbert space -
(see [13]).

The relation between orthogonality and metric projection is illustrated by

the following two standard results,

Proposition 2.4, Let Q: L » M be an operator (not necessartily linear). Then

Q = PM if and only 1f (1 - Q)L 1 M.

Proof. Q = PM if and only if ‘Ix - Qx|| < Hx - m” for all meM and x e L, if

o
PPN )

L R

N
|}
P

and only if l{x - Qx|| < Hx - x + m|| for all meM and x ¢ L, if and only if

(T - QL 1M, 0
e
Proposition 2.5. x 1 M t¢f and only 2f Pyx = 0. f?
Y
4
Proof. x 4 M if and only if ||x - m” 2 IIxH = llx - 0” for all meM, if and -3
—_ o
only if PMx = 0, N '1

.
ol aa

r3

PR
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PR
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Although Py is not a linear operator in general, the following known
"quasi-linearity" properties are true and will be needed for the proof of
Theorem 2.10.
Proposition 2.6. PM(wx) = wPMx for scalars o ol x ¢ L. dlao, PM(x + m) =
PMx + PMm for all x ¢ L and m ¢ M.
Proof. The homogeneity is obvious. Also, for fixed x ¢ L, m ¢ M,

e+ m - ey +pad [l = flx -2 xfl < lx +m - ml

for all m' €M, showing PM(X +m) = Pyx + P m. 1]

Proposition 2.7. If M has codimension one in L, then Py 18 a linear operator.

Proof. We show additivity; the homogeneity follows from Proposition 2.6. Let

z, * [\M be non-zero. Then for X)sXy € L there are unique mj<,M and scalars

a, such that x, = m, + a,z,. Then by Proposition 2.6,
j i3 30

P, (x

v (¥1 + xz) = PM((m1 + m2) + (a1 + aZ)ZO)

+ +
m m, + (al az)PMz

1 2 0

= PM(m1 + ale) + PM(m2 + azzo)

PMxl + Psz . 0

We now apply these facts to our situation. Call L =1L = ;E{Xn: -® <n <o}

Py

1 <p<a. Since P is reflexive, so is L. Denote by Pn the metric projection of

"]
K

[ 4

L onto L . It turns out that every SoS sequence has left innovations:

1
=V

Proposition 2.8. {Xn} has left inmnovations, botn linear and non-linear.

Proof. Define N = (I - P
—_— n n

O Uy
(N N I P, S S SN AP R P

e

»

PPN AP GO PR

—l)Ln' By Proposition 2.4, Nn 1 Ln-l; and since

Pn—an = Ln-l we have Ln = Ln-l + Nn' The proof for left non-linear innovations

v

is identical. {

X < ‘h". -
W% g% e N Gt
2850808 0%

.
s b b
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Thus no conditions are needed to split off a "left orthogonal" innovation
space. But, unlike the case of right innovations, this is not enough to produce
a left Wold decomposition. The problem lies in the impossibility of developing

an argument like that of Theorem 2.2, as the following c¢xample shows.

M, such that

Example 2.9. There exist one-dimensional SaS subspaces Ml’ Mz, 3

M, 1 Mk for all j # k, yet Ml + M2 is not orthogonal to M3s hence

M) M FMyOM QN

2 1°

Proof. Let 1<a<2 and define the functions

f1 = lA - 1B + 1C - lD’
= + . - - .
f2 1A 2 1B 1C 2 1D .
and f3 = 1[0 11 where A = [0,%), B = [4,),C = [%,1ﬂ),and D = [iﬂ.ll. 1t

may be easily checked that

and

1

=l o5% Ly s

Jeg, + €077 8, am = 12
By Corollary 1.3 this implies that the SS subspaces Mj s {Xféfj(s)dz(s): A R}
have the advertised properties. " B

There is still, however, a nice characterization, in terms of the metric

projections Pn’ of those processes having a left Wold decomposition. .

Theorem 2.10. The following are equiv:lent.

(1) {Xn} has a left Wold decomposition.

- 4
(i1) The metric projection orerators P Lpw ™ L are linear. Fj

Je
b aa?

L
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(111) The operators P commute,
(7v) Denoting by Pn m the rest:riction of Pn to Lm , we have that for all
k 21,
Y
Pn,n+1 Pn+1,n+2 Tt Pn+k-1,n+k - Pn,n+k : N
Proof. We show (iv) = (ii) = (i) = (iv) and (ii) € (iii). .
. . 7 . . -
Assume (iv) holds. By Proposition 2.7, each operator pn+£,n+£+1 is linear, .
implying each Pn,n+k is linear. Pn’ being linear on each Ln+k’ is by continuity .
linear on all of L _,, giving (ii). F
ii). = - . b
Assume (ii) Define Nn (I Pn-l)Ln’ and let Zn € Nn Then Zn 1 Ln-l y
. . . K > . . . . = .
Proposition 2.4 and thus Zn L Ln-ﬂ for 1 By Proposition 2.5, Pn—KZn 0
i i Z, +...+ 2 = i i-
The linearity of Pn shows Pn—k(zn + 7n-1 n—k+1) 0, giving us by Proposi
tion 2.5 that Nn + Nn—l +...+ Nn—k+1 1 Ln—k’ and hence that o
k-1 - . .
Ln-(1£=0 ® Nn-ﬂ) ® Ln—k' We now note that Proposition 2.1 and its proof are
valid with all arrows and orthogonalities reversed, provided we change the esti- .
kot k|l < + k|| = d < lx - . . X
mates on m, and n t° read || n‘l = “mn nll x|l an |‘mn|| 1% knll 2“X|l R
(Also, we may ignore the proof of the basis property of X @ On by our remarks ;
.
following the definition of left Wold decomposition.) Applying this version of ol
Proposition 2.1, then, we have that (i) holds. .
Assume (i). Then we may write for all n and ¢ = 1, :
e T Nn+( @N o1 &--® Nn+1 ® Ln' This means that writing Y ¢ Ln+f (uniquely) v
= +‘..+ o i 3 = -
as Y Zn+€ 7n+1 + Yn with Zj € Nj and Yn € Ln’ we have Pn,n+K(Y) Yn' ;
Then -
P ...P +.o..4 + =P ¢
041" " Tatk-1, ntk ntk Zot1 1) = Poont1t Poake2 ool Gt e T YY) i
= Pn,n+l(zn+1 + Yn) ::
=Y [
n -
= Pn,n+k(zn+k tootzo g+ Yn). -

Thus, (iv) holds.

e e T e T A T T e S e e e e e e e
I g Y I LR g
AT T B R T O A R ST
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.J'l

We now show (ii) © (iii). Assuming first that (ii) holds, we note that

| RS

for arbitrary We L+m and m<n,

A
UL/ W

PPW=P (W-(W-PW) = PW-PW-PW) = PW = PPW
mn m n m m n m

since Pm(w - in) = 0 by Propositions 2.4 and 2 5. Hence (ii) implies (iii).

Conversely, assume (iii) holds. We show by induction on k that Pn is linear on

each Ln+k’ whence it is linear pon L+°° by continuity. Pn is homogeneous by
Proposition 2.6; we show additivity. Clearly, Pn is additive on Ln. Assume it
. . . » -1
is additive on Ln+k—l' Let wl,wz be arbitrary in Ln+k’ and define :
Yj = Pn+k_le and Zj = Wj - Yj. Note Zj L Ln+k—1' By Proposition 2.7, Pn+k—l a
is a linear operator on Ln+k’ and this coupled with (iii) and our induction »t
assumption gives
Pn(w1 + wz) = Pnpn+k—1(Y1 + Y, + 2+ Zz) .
= +
Pn(Yl Y,
= PnYl +'PnY2 -
= PaPoscr 1 2 F PPy (g + 2)) _1
= inl + Pn W2 . :-:“
A
Thus (iii) implies (ii). The proof is complete. 0 i

Remark. The observant reader will have noticed that we make no use whatsocever
of the SOS property of {Xn} in Proposition 2.8 and Theorem 2.10. Thus these

results are true for any pth order process {Xn} (i.e. Ean|p < © for all n) with £
p>1. Of course, the definitions of innovation and Wold decomposition in this

case are with respect to the LP orthogonality lp'

We do not have a characterization of {Xn} for which a left non-linear Wold

M P AN

- )
r oS

decomposition exists, The method of proof of Theorem 2.10 will not work to
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prove a non-linear version of that theorem, as it uses the property that Ln is

codimension one in Ln+1' However, the non-linear analog of the proof that (ii)

implies (i) 7s valid, so that IZnearity of the metric projections P : L+ , Ln
n Lx

irmplies thet {Xn} has a left non-linear Wold decomposition.

Innovations: Right and left, nonlinear and linear

It is of interest to compare the various types of innovations introduced
earlier, which unfold the information of a SOS sequence {Xn}.
. . . r . .
The right nonlinear innovations {In} are given by the residuals of the

regression of Xn on the past Xn_l,...:

I; =X - E(anX ).

n-1°"""

. . r . . .
The right (linear) innovations {In} exist precisely when these regressions are

linear (Theorem 2.3) and then eqal the right nonlinear innovations, Ig = IE.

4
'

o

¢ ¢
The nonlinear left innovations {Iﬁ} and the (linear) left innovations {]n}

rYy  rr
)

-
AR AN

are given by the nonlinear and the linear prediction errors of Xn from the past

v r

X _qoeee
£ _
In =X - NL(Xn]Xn_l,...),
1Y =X - LX)
n n n' n-1

. where NL(XnIXn_l,...) is the "best'" nonlinear and L(anX ...) is the "best"

n-1°

lincar predictor of Xn from the past X i.e., the element of the non-~

n-1°""°"*

linear span of the past Ln and cf the linear span of the past Ln’ which is

nearest to X in Lp-norm (1<p<a). p

The nonlinear and linear left innovations coincide, It = Tﬁ, if and only o

if the best nonlinear and linear predictors of Xn from the past X coincide, &

-1’

LA WA
- @ .t e e e Ve
e ® e T Te e L e e % % .
A SN W S A W P IR R N




i.e. if and only if the metric projection of Xn onto Ln—l coincides with its

metric projection onto Ln-l’ if and only if there is a Yn eLn—l such that

' <p-1>, _
E(hn - Yn) Z =20 for all Z (Ln—l’
or cquivalently
<p-1>
- P =
ELX - ¥) an—l""} 0,
. . 4 £
(in which case of course Y =1 = 1)).
n n n
The nonlinear left and right innovations coincide, I; = If, if and only

if the regression predictors from the past coincide with the best nonlinear pre-

dictors from the past, E(Xn|Xn_1,...) = NL(anx ...), if and only if

n-1’

J<p—1>

E{{x - E(X_|X 2)
n n

RS lxn_l,...

This condition is a form of weak conditional symmetry, and is clearly sati.fied
if the conditional law of Xn given Xn—l"" is symmetric (since it will then be
necessarily symmetric about its conditional mean E(Xn|Xn l,...)).

The right linear innovations exist and equal the left linear innovations,

I; = If, if and only if the regression predictors from the past coincide with
the best linear predictors from the past, E(anxn-l”") = L(XnIXn_l,...), if

and only if E(Xn|X ,...) is linear and

n-1

<p-1>p 4
E{[x_ - B(X |X _4,...)] X} =0  for all k<n.

This is weaker than the previous conditional symmetry condition and is likewise

satisfied whenever the conditional law of Xn given X is symmetric. Thus

a-1’"""

symmetry of the conditional laws and linearity of the regressions implies that

all types of innovations coincide.

e . P y e e e
e e e PR S
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So far we have limited the discussion to one-step ahead prediction,
But the Wold decompositions and innovations introduced here are precisely
tailored to handle the general m-step ahead prediction; and indeed any esti-
mation problem based on observations of the past of X. To simplify the no-
tation we will write the expression of the m-step predictors and their errors

in terms of innovations only in the stationary case. Let

be the right nonlinear Wold decomposition of X, which always exists, Then

I;==a;'En, and thus it can be written in the form
r
o a
x =yT+ ) X T
n n ' r n-k
k=0 aq

Tt then follows (as in the proof of Theorem 2.2) that the m-steps ahead

(m > 1) regression predictor is

o a;
EGIX. ..y =vi+ ¥V 21
n n-m n r n-k
k=m a
0
and the regression prediction error is
m-1 a; . -1
Xa ~ E(anxn—m"") -1 T In—k ) 5
k=0 a <
0
If a linear right Wold decomposition exists (cf. Theorem 2.3), then one 9
simply replaces Y by Y and 1 by T.
Now assume a left linear Wold decomposition exists (cf. Theorem 2.10). fi
Then we obtain likewise

L TP P S I )
I
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from which it follows that the m-step ahead best linear predictor is

¢
I A N
L(xnlxn_m,...) =Y+ y <+ L.
k=m ao

and the linear prediction error is

Im
[o3 S I S
-
=]

[
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3., Independent Decomposition of Stable Sequences

As we observed following Corollary 1.3, independence implies two-sided ortho-
ponality for SuS random variables, but not conversely. Thus we should not, in
general, expect as in the Caussian case that the innovation subspaces in a Wold
decomposition are independent. In this section, we study those processes for
which this is the case.

Using the notation of Section 2, we say that a SaS sequence {Xn} has Znde-
coviont innovations if for each n we can find a subspace Nn so that Ln =L +N ,

n-1 n

with L and N independent. To symbolize this we write L =1 ®N . We say
n n n n-1 n

-1
that {Xn} has an tndependent Wold decomposition 1if there exist subspaces {Fk} s0

oo

that for each n L =Z _ N . +L__ k €Z} are mutually indeperndent

where {L_w,Nk:

(in symbols, Lh =(Zoo

k=00Nn—-k) L ). If {Xn} has an independent Wold decomposition

then clearly it has both right and left Wold decompositions and all three coincide.
The independent Wold decomposition for stochastic processes with infinite
variance was studied by Urbanik [16,17,18] for strictly stationary processes
"admitting prediction', and by Thu [15] for random fields. Here we give spectral
necessary and sufficient conditions for the existence of such a decomposition for

5SS sequences.

Theorem 3.1. Let 1<a<2 and let {X } be a Sas sequence, represented by
{fn}. The following are equivalent.
(1) {Xn} has independent innovations.

(i) {Xn} has an independent wWold decomposition.

(127) For all n, f =g +h,whercg « EETfk: k<n-1} = and

L -
fk -hn = 0 ac.e. for k<n-1, :L

{iv) Fer alln, f_ =
n

o0 PR Oy

"m0 A ntaek T Vp WRETE W

Sp{fk: k<n} = Ssp{fk: k<m} + sp{¢k: k<n}, Y tep =0 auc. Jor

PN

all k, £, and L ¢€ =0 ag.e. for all k # C.

. s A P N . LSS, .
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3.2

Proof. We show first that (i) is equivalent to (ii). Assume (i) holds, and

observe that for fixed n we may write

L =1L ® N

n n-1 n
= ® ®
Ln—2 ® Nn—l Nn
E = Ln—k-—l P Nn—k ® ... d Nn.

Choosing 1 <p<a, and applying Proposition 2.1 (remembering that independence
a0
implies orthogonality), we get that L = (Zk=0 4 Nn—k) ¢ L __ and that each
* ‘w . r3 s
!! Z ¢ Lk=0 .4 Nn-k has the appropriate unique expansion. Since the spaces Ln—k—l’

Nn—k""’ Nn are mutually independent by the construction above, the mutual in-

o dependence of {L__, Nk: keZ} follows. So (i) implies (ii). Also, (ii) implies
b

(i) by definition.

We now deal with the spectral conditions (iii) and (iv). Recall Schilder's
result that SaS variables are independent if and only if their spectra! representa-
tions have almost disjoint support.

Assume (i). We may then write X =Y + Z withY «¢L , and Z independent

n n n n n-1 n
of L ;. Denoting by {gn,hn} the representatives of {Yn,Zn}, we see (iii) holds.
Conversely, if (iii) holds, we let Zn be the random variable in Ln which is

represented by h_, and let N = sp{Z ). N_ is independent of L since f,*h =0
n n n n- k n

n 1
for k<n-1. 1It is clear that Ln = Ln—l + Nn’ so (i) holds. This shows (i) is

equivalent to (iii).
g Assume (ii). 1If dim(Nj) # 0, choose a non-zero Wj eNj. Otherwise, let wj==0.
. Let {¢j} be the representatives of {Wj}. By hypothesis, Xn has an independent
. oo
= T . ‘.
expansion X =Y + I, ak,nwn—k’ where Y el _. Letting 1wj} represent {Yj}, we

have £ =y + Zk=0 ak,n¢n-k’ with y_ ¢ gsp{fk: k<m}. The relation

LI - AT A S )
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) @& N translates in representation space to the remaining state-
n ~0 k=0 n-k

L =1
ments in (iv). Hence (ii) implies (iv). That (iv) implies (ii) is easily seen,
A 00 A
. . , , . . A A . T _
since (iv) implies (iif) with g, wn + Zk=1 ak,n¢n-k and hn aO,n¢n here
fore (ii) is equivalent to (iv) and the theorem is proved. il oo

In the stationary case, this result takes on the following form, where we

assume for simplicity that {X } is completely non-deterministic, i.e. L _ = {0}.
n -0

Theorem 3.2, Let 1<a<2, and let {Xn} be a sSaS sequence represented by {fn}.
Then {Xn} i8 statiomary, completely non-deterministic, and has an independent -
Wold decomposition if and only if (iv) of Theorem 3.1 holds with v, =0, and with

3 n and |hana independent of n.

Proof. Assume first that {Xn} is statjonary, completely non-deterministic, and -

has an independent Wold decomposition. Let S be the canonical shift of {Xn}, S

i.e. S is the isometric linear extension of the map SXn = Xn 1 on Lp(Q,Z,P).
Since S preserves joint distributions o

[::} = = = ® = ®

Ln-l Nn Ln SLn+1 S(Ln ® Nn+l) SLn ® SNn+1 -
B Ln-l ® SNn+1 ‘ kk
This implies SN_,, = N . Choosi W, eN_ and defining W, = S W 3
is implies SN ., e ocosing a non-zero W, e N, and defining W, = 0 =
we see that {Wj} is an i.i.d. sequence with W, €N, . By our assumption, then, -
00 -

we may find ak,n so that Xn = Zk=0 ak,nwn—k for each n. Note that "
a, W = X = SX = Y a SW = J a W . )
k=0 k,n n-k n n+l k=0 k,n+l n+l-k k=0 k,n+1l n-k o

A
whence a, = a does not depend on n.

k k,n -
Letting {¢j} be the representatives of {Wj}, we have that fn =

"1=0 21 %n-k
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3.4

That H%”a is constant in j follows from the fact that {wj} is identically

distributed, and that ¢j'¢k = 0 a.e. for k # j follows from the independence of

{Wj}. g{fk: k<n} = 5{(1)‘(: k <n} since L = E{wk: k <n}, and the first impli- A

cation is proved. . :E
For the reverse implication, let WJ, eLj be the SaS random variable repre-

sented by (bj, and let Nj = sp{wj}. Clearly, {Wj} is i.i.d. and X_ = Z:=0 aW -

This moving average is stationary and completely non-deterministic.

L= .s_p{wk: k <n} since s—p{fk: k<n} = _s;{¢k: k <n}, proving the theorem. a

e - " .
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4, Examples

We present here some examples of SOS processes having or not having

various of the decompositions discussed in previous sections. They are in-
tended to illustrate the theorems we have proved (although they do not ex-
haustively do so), and more importantly, to provide some feeling for what
is and what is not possible regarding these decompositions. We should note
at the outset that in the Gaussian case 0 =2, all aforementioned decomposi-
tions exist and coincide; and the situation for o <2 should be compared

with this.

Example 4.1. Certain autoregressive and moving average SoS processes have
Wold decompositions. Specifically, let {En} be a sequence of i.1i.d. SaS

variables., If for all n, {Xn} satisfies either

. K . .
(i) Xn+1 = Zk=0xkxn-k + &n+1 with En independent of Ln—l’ or
.. _ K

(ii) Xn = Zk=0uk€n-k with En‘eLn,

then {Xn} has an independent Wold decomposition.

Proof. 1In the case (i), it is clear that {Xn} has independent innovations,
and so by Theorem 3.1 has an independent Wold decomposition. The existence
of the decomposition in case (ii) follows by definition (with Nn==sp{Cn}).
Of course, left, right, or two-sided decompositions exist for such {Xn}
when the appropriate hypotheses of left, right, or two-sided orthogonality

of {in} are assumed. o

If En ¢ Ln’ however, a moving average as in 4.1(ii) may not have a Wold

decomposition, as the following example shows.

Example 4.2. There exists a stationary S0S moving average that has a left
Wold decomposition, et does not have a right or independent Wold decomposition. ?1
1
I.1

o0
Specifically, let {En}n=—w be an i.i.d. sequence of S0S random variables,

PN S Y T

".'\."\\'\\
5



4.2

1 ~ 1< 2, Set Sn =5, - 25’{1-1'

Then {X_} does not have a right (linear) Wold

decomposition, yet does have a left (linear) Wold decomposition.

Proof. To show {Xn} does not have a right Wold decomposition, we procced as

follows., Assume that {Xn} does have a right Wold decomposition, in which

case we have E(xn+1|xn,xn_l,...) € Ln by Theorem 2.3. We show that {Xk: k - n}
0
forms a basis for its span, whereby we may write E(xn+1|xn,xn_l,...) = Ek=OAkxn-k

for some {Xk}. We then determine, using orthogonality, the only possible choice
for the sequence {Ak}, and show that all necessary orthogonality relations do not
hold with this choice, completing the first half of the proof.
To show that {Xk: k <n} forms a basis for its span, it suffices to show
there exists K such that
M

X
I jZOBJ N

N
-J'Hp © K”J.Zoijn-j“p

for all Bj and all M<N. Recall that for any 1 <p <a there is a constant
c =c(p,a) such that for all SaS variables X with representative f,

ST o
Ilh“p-—c||f“a. Note also that we may represent {En} by {1[n n+1]} on L (IR).

b

Hence
L o L N
B.X . = B.(5 .-~2 .
“J-Zo J n-JHp szo J( n-j F’n—J—l)Hp
L o -
= (18, + jzl(ej-zej_lmn_j - 28 4l
- Syl T -2 1%+ 128,07
¢ Uik P Bk P | L .
j=1
é cQ'SL.
SN -0
It thus suffices to find K such that g—-ZK . We claim that K=2 will
M
e 3 e T S
o AT PR WP O 202 " A, AT P SmadiaSetated o ta 20 e Y S S e




satisfy this requirement. To see this, call B= |BO|Q+Z?___1|B. -23._1|a, and
R J J
M+k
=—B—— . Then
k M
N o a
g B+ 1 8 -28 .7+ 28
Ny 7
S o
M B+ IZBMI
N a a
YoIB, -2k, |7+ |28 |
j=M+1 J -1 N
> min (1, ] 5 )
|28,
N-M
. a ) a
= min (1,jzllyj_l—yj/2[ + |\N_M| ).

Putting n=N-M, we have
N-M

R

IYJ._I-YJ./Z{O‘+ ny_M{u= ll-yllzla+ ]yl-yz/Z}a oo
j=1

a a
iYn—l-Yn/2I * lYn| '

We may verify this is > Z-Ot as follows. 1If not, then all terms must be
less than 2-01’ i.e. !1-Y1/2| <, lYl-Y2/2| <%, etc. But ‘1-Y1/2I <k
implies Y, >1, and lyl -Y2/2| <’ with v, >1 implies v, >1, and so on until
we reach Yn >1 in which case the last term is not less than Z-a. We now
have that {Xk: k <n} forms a basis for Ln'

Under the assumption that )(rl does in fact have a right Wold decompo-

o
sition, we may write E(Xn+1|Xn,Xn_1,...) = Lk=0>‘kxn—k for some choice of
{Ak}. Also, the )‘k must satisfy Xn-j 1X 4 —Zk___o Aan_k for all j 20 by

Proposition 1.5. This requirement is equivalent, by Lemmata 1.1 and 1.2, to

o

M v
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{
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o
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<p—1> e
0 Exn—j (Xn+1 kzokkxn—k)
<p-1> =
= - p- - - -
B E(gn-J 2gn-j-l (gn+1 2£n kzoxk(gn—k zgn-k-l))
2 - a+2M + 2%, 5=0,
0 1
= cp(1+2a)p/a_1 . j
¢} a-1
A - + A+ i >0.
l 2 j-1 1+2) 3 2 Xj+1, j>0
Thus Ak must satisfy
A, = 224201 427
1 0’
=201 + 279 - 22 k>0
k+1 k k-12 ‘
A solution to these equations is determined by specifying AO' The solution
for k20 is
h = 250 - 27T - 2 4 @ - 27y,
It is easily seen that lim|Xk|==oo unless X0==—21_a. Hence we must have that
koo
Ak _ _(zl—a)k+l

and furthermore that

o _ -, v .l-a k
Xl = ) Mok = bpep ~ 21 -2 L@ bk

k=0 k=0

To obtain our contradiction, recall that all of Ln (not just each Xn j) must

(e o]
be orthogonal to X+l ™ Zk=0Aan_k. Check that for j >0,
<p-1> hs
S LI VS kzoxkxn-k)
- _ <p-1> <, v . l-ok
=By - gyt ) T By s 2 -2 T2 L)

k=0

]
%




= (const # 0)[1 - 217 2% (o17%2;

2-0

= (const # 0)[1 - 2 1,

which is non-zero for <2, completing the proof that no right Wold decompo-
sition exists.

To show {Xn} has a left Wold decomposition, it suffices by Theorem 2.10 to
show that the operators Pn are linear. Clearly these operators are linear if

and only if they are linear on each L,, M < ®. By our arguments above, {Xn}

M’

is a basic set. It is thus a simple matter to show, in view of Proposition

2.6, that Pn is linear on LM if and only if

M M
() P( ) aX)= ) aPX.
D mel Kk,

Since is by definition independent of (and thus orthogonal to) L for
y P g a

> + - : 2 . .
k 2 n 2, the RHS of (7) is just an+anXn+1, or Pn(an+1xn+l)’ by Propositions
2.5 and 2.6. Recall (Proposition 2.4) that Pn(an+lxn+l) is the unique Y Ln
satisfying
- <p-1>, _ ) "
n(an+lxn+l -Y) X£ =0 for £ < n. <
The LHS of (1) is likewise the unique Y' ¢ Ln satisfying ~4
M cp1>
EC § aXx -v) P x, =0 for £ n. _
k=n+1 2

Now represent {Y',Xn. -© < n < ®} by {g',fn: -® < n < »} and recall that .
independence of Xk and XE for lk - £| 2 2 is equivalent to fk and f2 having

almost disjoint support tor like indices. Thus for £ < n, D




M

-1 -

0=EKE( ) ax -y Py
kﬁﬁlkk £
M
<g-1>
= (const. # 0)f( ) akfk - g ¢ ! fldm
k=n+1

- . gy -l

= (const, # O)f(an+lfn+l g") fzdm

= - vy <p-1>

= (const, # O)E(an+lXn+l Y') XZ'

Hence Y = Y' (i.e. (1) holds) and {Xn} has a left Wold decomposition.
For the sake of completeness, we also compute this left Wold decomposition.

[eo]
Si nce {Xn} is basic, we must have that an = A for some choice of

nt+l k=0 kxn-k

k

A

o0
n+l k=0 kxn—k

to derive equations which {Ak} must satisfy. We omit the details, and state

cess, we may use the orthogonality relations X -z

only that the analogous arguments show that

provides the unique solution to these equations for which ZAan_k converges.
Hence the left Wold decomposition for this process is given by: L__ = {0};
1 1
iy £ o0 1-0_k £ 1-a_£
= } =1 : =1 -2 .
N spiIn where In =0(2 ) X and Xn n In—l 0

Example 4.3. All sub-Caussian sequences have identical right and left Wold

decompositions, yet never have independent Wold decompositions.

1
Proof. Any sub-Gaussian process {Xn} may be represented as Xn==A6Gn, where

{Gn} is a mean-zero Gaussian process and A is a positive a/2-stable variable,

(X }. Analogous to what was done for the right Wold decomposition for this pro-

1 xz for £ < n

v %

o

[

€,
i oo

o
e o e m .
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S ' - arde . k< I " N
independent of {Gn}. Let L' Sp{Gk. k <n}, and let Ll =L, @b &N

be the standard (independent) Wold decomposition of {Gn}. Then

1 1 1
Ln = AZLA, L = AﬁL:w; and letting Nk = AéNé, we have the decomposition
o0

L =L + Zk=ONn-k'

n That this decomposition possesses the appropriate

orthogonalities follows from the fact that if A, Zl’ and Z_, are independent

2

1 1
mean~zero Gaussian, then A%Z. and A’Z_ are two-sided orthogonal:

with Z_,Z 1 ’

1°72

<p=1> 1% <p-1> <p-=1>
p-1 (Aézz) = gaP/2y P-1%5 o P/2 0, el g

2
E(A7Zy) 1 2 1 2

The decomposition cannot be independent, since Ln contains no non-trivial

independent random variables (cf. Lemma 2.1 in [1 ]). 7]

Example 4.4. Let {gn} be i.i.d. SoS, 1<a<2. Let 0<]|)A| <1 and define

x =52 ke

n =0 Then {Xn} has a right Wold decomposition, but has no inde-

n+k’
pendent or left Wold decomposition.

) - R _ -1 . S - ux . SR k.,
Proof. Let u=2>X and define Z Xn u n-1' Since Xn Lk=OU L, x> we

have I = EBTXR: k <n} = Eﬁ{zk: k <n}. We claim that {Zn} is not an indepen-

oo
dent sequence, yet has a right Wold decomposition Ln = Lk=0 ¢ Nn-k’ where

N, = s Z.1.
; %p{LJ}
_ <g-1> a, @ k
Note Zn = =X &n—l + (1 - lkl )Zk=0X gn+k' Represent {&j} by {Ij},
1.\
|1, =1 i
; [5.5+1]° so that {Zn} is represented by {fn}, where

<p-1> a - k
I .+ Q- [AD T
n-1 k=0 n

£ = -\

n +k

Note also that since €j = X }.

5" XXj+1, we have Ln = sp{...,gn_z,gn_l,xn

N
The foll i
e following calculation shows aOXn + Zk=1ak§n—k 1 Zn+1 for any choice of

a, and hence that L 1 Z
j n

n+1:




2

N
j <y=1>
RIS D f  .dm

n+l

W
M
c
~~
o~

k=1

e
]
o

<a-1> ;0 % 1j.<a-1> <a-1> a, w .k
a R[[jzo(.x ) Ll -2 Lo+ (-1 )kzox I kep)dm

<u-1> <a-1>

) k+l <o-1>

F(1 - AN Tk ]
k=0

= a

<G_1>[—A<a_1> + (1 - |k|a)x-1 z |A|a(k+1)]

0 k=0
= 0.
Now observe that
<p-1> <a-1>
vel) = h\ cee) = .
E(xn+1lxn,xn_1, ) = E@2_, + xnlxn,xn_l, Yy = A X

Hence {Xn} has a right Wold decomposition by Theorem 2.3. However, the spaces

N, are ».»%. independent, since fk °f£ # 0 a.e. (It is also clear that Xn is

not a sub-Gaussian process, since Ln contains independent random variables.)
We now wish to show {Xn} has no left Wold decomposition. We do this by

showing that condition (iii) of Theorem 2.10 is violated. To this end, let

Pn be the metric projection onto Ln' We show that there are constants b

1

and b2 such that Pan+1 = blxn and Pan+2 = b2Xn yet

2
pn+1pnxn+2 - ann+2 N bZXn 7 blxn C Pnpn+1xn+2’

showing P does not commute with P .
n n+l ]
0o " g
Let Yj =Pan+j, j=1,2. Then necessarily Y1==b1Xn + Zk=1ak€n—k’ since :;
L = ;;{Xn’gn-l’én-z""} and {Xn’gn-l‘&n—Z""} is a basic set. By Proposi- . -
. a . _ - e
tion 2.4, Y, must satisfy Xn+1 Y1 an. The requirement Xn+1 Y1 lgj, jsn-1,
implies
i <p-1> .
= - - P~ -
0= EX g - b% kzlakgn—k) 5 .’
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4.9
which in turn implies a-_i =0 for all j, and Y1 =b1Xn' To find bl’ not. that
=k i -1 *© Lk
Xn_blxn—-bl"n-’-“ —bl)2k=1)\ £n+k and compute
_ _ <p—1>
0 E(Xn+1 blxn) Xn
<g-1> s % <a~1>.k
' = (const. #0) [-b 2 4 (7L 2 p )4 T oIk,
1 1
k=1
<o-1> - <a-1> -
= (eonst. #0) [-b.% 7+ 7F - )% - 2B
Solve for b1 to get
ayq
o= 1o dy% 61
1 97371 -

-1 %%+ (2H

Using the same methods, we find that Y2=b2}(n where

S A P o).
2% - PH%e

20
)q

Now, b =bi if and only if

2
(- DY+ (M= 1a - DT+ (%92,
if and only if
A+ 1AM = a-HY+ 22 HL
Since 1<a<2 and 0< |A\| <1, we have that q>1 and
(- MM+ 200N < (1= A% + 2940

< [+ A%

This shows b2 #bi and hence that {Xn} cannot have a left Wold decomposition. (]

il A .
Example 4.5, The stationary sequence X = f__"ein dzZ(}) is orthogonal but by

has no right or left or independent Wold decomposition.

.
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imA, <a-1> inA T —-imA i
Proof. Since for m#n, fT_Tﬂ(elmx) #=17 300y = J’_ﬂe m emxd)\ = 0, it follows

that X 1X .
m n

We show that sp{Xn X _1} is not orthogonal to X , i.e. that

-2’"n
id <a-1>
f””(a + bel)\) -1 eu)\d)\ does not equal zero for all a and b. Taking a=b,
we have ’
T m -iAr, 12X
iA <a-1> i +
(* 1 4 f(l + elx) -1 elz)‘dk = [ Q1 e“ ;ix dX
-T -1 |1+e”|
m
a/2 ¢ cos2h + cos A
=2 1= o72 dA.
0 (1+cos )

The numerator of the integrand vanishes at 6 with cos 6 =%, is positive on
. m
i [0,0) and negative on (8,7), and of course fo(c052>\+cos A)dx = 0. We thus

1 have

E. (%%) 1 Za/z{? + ?} cos2 XA + cos A

= d)\ «
y 0 8 (1+cos )\)1-(1/2
2(1/2 6 om
< To7s {f+f}(c032>\+cos)\)d)\
(1+cos )"~ 0 ©
= 0.
Assume that {X_} has right innovations, i.e. L. = L ® N . Then
n n n-1 * 'n '
Y = + = - 1 1 -
n Yn Zn where Yn LLn_l and Ln—-l 1 Zn Xn Yn' A straightforwara adapta

tion of Theorem 7.1 of [11] shows that {Xk’ k € n} forms a basis in L (see

1 .
(see [1, p. 606]) so that Yn=ZkSn—laka’ the series converging in every

Lp, p <a. Then Xk.LXn—Yn, k<n-1, implies ak=0, i.e. Yn=0, so that
L _4X and sp{Xn_z,Xn_l} LX =~ contradicting our earlier result. Thus {Xn}
has no right innovations and no right Wold decomposition.

Th th i ! i i
e orthogonality of the Xn s implies anLn—l and thus the best approxi-

_j“‘.;nl_l.'.“._, R

mation to )(n in Lys k<n -1, is the zero element. It follows that the left

. Pt T et et et et DI IS L T
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innovations space L_ =1L ® N is N = sp{X_}. However N ® N 1is not
n n-1 < 'n n n n-1 n
orthogonal to Ln 5> SO no left Wold decomposition exists. This is so because
X +X is not orthogonal to X as
n n-1 n-2

i , . _ , T ) <qel> —i2)

{ (eI 4 TO-DAyT> TO-D)X s gy Ay @rlrmi2hy
i

—'n' —

<0

]
—

from (*) and (*%).
That {Xn} has no independent Wold decomposition follows from the above,

but also follows immediately from part (iii) of Theorem 3.1 and the fact that

inX . .
each fn(A) = ™ has as support the entire interval [-m,m]. uJ
DR I R - - R
T e A o 2]
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